ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>nora systems GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme holder</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Declaration number</td>
<td>EPD-NOR-2022004-IBA1-EN</td>
</tr>
<tr>
<td>Issue date</td>
<td>15.02.2022</td>
</tr>
<tr>
<td>Valid to</td>
<td>14.02.2027</td>
</tr>
</tbody>
</table>

norament® 928 ed, resilient, electrostatically dissipative floor covering from rubber

nora systems GmbH

www.ibu-epd.com | https://epd-online.com
1. General Information

nora systems GmbH
Programme holder
IBU – Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Declaration number
EPD-NOR-2022004-IBA1-EN

This declaration is based on the product category rules:
Floor coverings, 02.2018
(PCR checked and approved by the SVR)

Issue date
15.02.2022

Valid to
14.02.2027

norament® 928 ed
Owner of the declaration
nora systems GmbH
Höhnerweg 2-4
69469 Weinheim (Bergstraße)
Germany

Declared product / declared unit
1m² resilient floor covering (A1-A3: 1m² produced, A1-A5: 1m² installed)

Scope:
Product line norament® 928 ed, high pressure pressed homogeneous floor coverings made from rubber in various colors and designs.
Declaration according to ISO 14025 and EN 15804 describing the specific environmental performance of the mentioned construction products produced in Germany (Weinheim/Bergstraße).

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804.

Verification
The standard EN 15804 serves as the core PCR
Independent verification of the declaration and data according to ISO 14025:2010

2. Product

2.1 Product description/Product definition
In this Environmental Product Declaration (EPD), resilient electrostatically dissipative rubber floor coverings of the nora systems GmbH product line norament® 928 ed with different designs and surface structures but same rubber recipes are modelled.

For the product line norament® ed standards apply:
- EN 12199:2020: Resilient floor coverings - Specifications for homogeneous and heterogeneous relief rubber floor coverings; depending on style DIN EN 1817: Resilient floor coverings - Specification for homogeneous and heterogeneous smooth rubber floor coverings
- ISO 10874:2009: Resilient, textile and laminate floor coverings – Classification
- EN 1081:2021: Resilient, laminate and modular multilayer floor coverings - Determination of the electrical resistance

For the placing on the market of the product in the European Union/European Free Trade Association (EU/EFTA) (with the exception of Switzerland) Regulation (EU) No. 305/2011 (CPR) applies. The product needs a declaration of performance taking into consideration EN 14041:2018-5, Resilient, textile, laminate and modular multilayer floor coverings - Essential characteristics and the CE-marking.

For the application and use the respective national provisions apply.

2.2 Application
Electrostatically dissipative norament® 928 ed floorings offer optimum ESD protection of electronic devices and equipment. It protects against electrical shock and is resisting most oils and greases.
Floor coverings are classified according to ISO 10874. Floor coverings for high performance in professional use:

Dr. Alexander Röder
(Managing Director Institut Bauen und Umwelt e.V.)

Matthias Klingler
(Independent verifier)
2.3 Technical Data
Excerpt of technical data sheets: (available at www.nora.com)

Constructional data

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product thickness</td>
<td>3.5</td>
<td>mm</td>
</tr>
<tr>
<td>Grammage</td>
<td>4800</td>
<td>g/m²</td>
</tr>
<tr>
<td>Product Form</td>
<td>tiles</td>
<td>-</td>
</tr>
<tr>
<td>Type of manufacture</td>
<td>pressed</td>
<td>-</td>
</tr>
<tr>
<td>Improvement in footfall sound absorption</td>
<td>10</td>
<td>dB</td>
</tr>
<tr>
<td>Anti-slip properties EN 51130</td>
<td>R9</td>
<td></td>
</tr>
<tr>
<td>Electrical resistance EN ISO 1081</td>
<td>E6-9xE7</td>
<td>Ohm</td>
</tr>
<tr>
<td>Hardness</td>
<td>84</td>
<td>A Shore</td>
</tr>
<tr>
<td>Abrasion resistance at 5 N load (ISO 4649 (method A))</td>
<td>90</td>
<td>mm³</td>
</tr>
</tbody>
</table>

Beside the here declared 3.5 mm thick flooring, this product is available in 4 mm thickness.

Performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to EN 14041:2018-05, Resilient, textile, laminate and modular multilayer floor coverings - Essential characteristics.

2.4 Delivery status
The delivery takes place as tiles with dimensions of 1002 x 1002 mm. The backs of the coverings are sanded and have arrows indicating the installation direction.

2.5 Base materials/Ancillary materials

Simplified recipe norament® 928 ed:

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymers (synthetic rubber):</td>
<td>40</td>
<td>%</td>
</tr>
<tr>
<td>Mineral Fillers</td>
<td>39</td>
<td>%</td>
</tr>
<tr>
<td>Various color pigments:</td>
<td>8</td>
<td>%</td>
</tr>
<tr>
<td>Auxiliary substances and vulcanization system:</td>
<td>13</td>
<td>%</td>
</tr>
</tbody>
</table>

The auxiliary substances used are waxes and antioxidants; the vulcanization system is based on Sulphur as cross-linking agent and vulcanization accelerators.

1) “This product/article/at least one partial article contains substances listed in the candidate list (date: 17.01.2022) exceeding 0.1 percentage by mass: no”.

2) “This product/article/at least one partial article contains other carcinogenic, mutagenic, reprotoxic (CMR) substances in categories 1A or 1B which are not on the candidate list, exceeding 0.1 percentage by mass: no”.

3) “Biocide products were added to this construction product or it has been treated with biocide products (this then concerns a treated product as defined by the (EU) Ordinance on Biocide Products No. 528/2012): no”.

2.6 Manufacture
After weighing and mixing of the rubber compounds of the different components, the blanks undergo moulding on the calendar. Vulcanization (crosslinking with sulfur) is done in high pressure multi presses with a pressing power of approximately 1,200 tonnes and at a temperature of 170 ºC. Due to the high pressure, a dense, closed vulcanization skin is formed on the surface. The Vulcanized tiles are sanded over their entire rear surface and die cut to the exact final dimensions. The resulting product is tiles of one square meter and a weight of 4.8 kg.

The quality and energy management of nora systems GmbH is certified according to ISO 9001.

2.7 Environment and health during manufacturing
The lifting of loads (raw materials) is facilitated in many ways through appropriate lifting assistances.

nora systems GmbH purchases the total electrical energy for production and administration at the site Weinheim from renewable energy sources. Respective evidence is available at IBU.

Thermal energy is generated centrally and in heating boilers from natural gas.

Since 2000, the environmental management system (existing since 1996) is certified to ISO 14001, further an energy management system according to ISO 50001 is established.

2.8 Product processing/Installation
The installation of the floor covering is based on the technical regulations of DIN 18365 Construction contract procedures (VOB) - Part C: General technical specifications in construction contracts (ATV) – Flooring work. Suitable subfloors are made of screed – according to VOB Part C, DIN 18365 Floorcovering Work, hard poured asphalt according to DIN 18354 Asphalt flooring work, chipboards, plywood, etc. Before installing rubber floor coverings, the subfloor generally has to be levelled.

The application of the adhesives over the entire surface is done in accordance with the installation recommendations of the nora systems GmbH, using adhesives and further auxiliary material approved and suitable for norament® 928 ed rubber floor coverings (available at www.nora.com).

To assure full dissipative behavior a dissipative adhesive according ISO 22837 with a resistance of R<3x10⁶ Ohm is required.

When selecting the installation materials the requirements of the basic award criteria of the Blauer Engel – “Low-Emission Floor Covering Adhesive and other Installation Materials” (DE-UZ 113) should be observed, alternatively GEV-EMICODE EC1 PLUS. These specifications ensure excellent health protection due to minimized emissions.
In addition, the instructions of the laying material manufacturers are generally to be followed. When working with laying auxiliary material, the latest version of the German standard TRGS 610 is to be complied with. Cuttings should be used for energy recovery.

A wet or damp cleaning may only be carried out after the adhesive has bonded, i.e. after approx. 48 hours at the earliest.

2.9 Packaging
Delivery on wooden europool pallets (exchange system), sealed in recyclable polyethylene foil.

2.10 Condition of use
Because of their dense and closed surface and the "nora cleanguard®" finish, norament® floor coverings don't need to be coated. The coverings are permanently resilient, they remain dimensionally stable when bonded and have good ergonomic properties.

2.11 Environment and health during use
Since nora floor coverings do not have to be coated during their service life, there is no major use of chemicals during the usage phase, apart from mild cleaning agents.

nora floor coverings meet the requirements of the German Blauer Engel according to the Basic Award Criteria (DE-UZ 120) for resilient floor coverings and the Finnish M1 - Emission Classification of Building Materials to avoid any impact on health due to emissions of norament® 928 ed.

2.12 Reference service life
A calculation of the reference service life according to ISO 15686 is not possible.

According to manufacturers' estimation technical service life of at least 40 years is possible. Due to their very high abrasion resistance and single-layer structure (rubber through and through), the floor coverings hardly wear down even when extensively used. When used in the designated areas of application and under the usage conditions commonly associated, they stay fully functional and visually appealing during the indicated useful life.

2.13 Extraordinary effects

Fire
norament® 928 ed is hardly inflammable (Cfl-s1) according to EN 13501-1 and toxicologically safe in the event of fire according to DIN 53436-1 und DIN 53436-2.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building material class</td>
<td>Cfl</td>
</tr>
<tr>
<td>Smoke gas development</td>
<td>s1</td>
</tr>
</tbody>
</table>

Fire protection

Water
Resistant to water exposure of the extent to what is typical for indoor use. Not suitable for real wet areas (e.g. showers, wading pools, etc.).

Mechanical destruction
Not relevant.

2.14 Re-use phase
For norament® rubber floor coverings, there are basically the following options for a re-use phase:
- Material recycling (e.g. granulating and processing into landing mats, industrial or stable mats, and coverings of sports areas or silent asphalt)
- Thermal recycling (e.g. use as substitute fuel in thermal power plants)
- Full material and thermal recycling for energy recovery in the cement industry. Use of stored thermal energy as well as use of mineral filler as raw material.

2.15 Disposal
The manufacturer recommends introducing the products after their use stage into thermal recycling (secondary fuel for waste incineration) or utilization as secondary fuel and secondary raw material (mineral fillers) in the cement industry (material and thermal recycling). EWC-code e.g.19 12 04.

2.16 Further information
On a yearly basis nora systems GmbH calculates the CO₂-Footprint over the entire lifecycle of their products. CO₂-emissions that cannot be avoided during the value chain are offset (third party verified carbon Neutral Floors™ program).

Further information under www.nora.com

3. LCA: Calculation rules

3.1 Declared Unit
The reference unit is 1 m² of floor covering. The values of module A1- A3 refer to 1 m² produced. This EPD represents a product declaration, i.e. the production and disposal of off-cuts during the installation stage are assigned to module A5. The combined modules A1 - A3, A4 and A5 refer to a reference unit of 1 m² installed.

The material for subfloor preparation and adhesive bonding, needed during installation, is not considered. Information on the complete floor structure can be found in Environmental Product Declarations based on the PCR „Dispersion adhesives and primers for floor coverings“ and „Mineral factory-made mortar“.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>conversion factor [Mass/Declared Unit] [Product weight]</td>
<td>4.8</td>
<td>-</td>
</tr>
<tr>
<td>Layer thickness</td>
<td>3.5</td>
<td>mm</td>
</tr>
</tbody>
</table>

Further information under www.nora.com
3.2 System boundary

Type of EPD: from cradle to gate with options

The analysis of the product life cycle includes the following stages:

- Production stage A1-A3: Consideration of production of the basic materials and the manufacturing of the floor covering incl. packaging material (input of waste paper for paper/cardboard production).
- Transport A4: Assumption for the transport of the products to the construction site.
- Installation A5: Production, transport and incineration of the off-cut material, incineration of off-cut material (gained energy is declared in D as avoided environmental burden), disposal of the packaging (incineration of PE film). The pretreatment of the underground surface (prime coat, levelling compound, adhesive) is not considered. This treatment depends on the building and the application and need to be specified for the particular case.
- Use stage B2: Scenario for maintenance/cleaning according to the manufacturer’s recommendation (see 4.)
- End-of-Life stage C1, C2, C3: Scenario for the incineration of the floor covering incl. removal from the building and transport to the waste incineration plant (gained energy is declared in D as avoided environmental burden).
- Benefits for the next product system D: Extraction for electrical and thermal energy from the waste incineration process of the product, the off-cuts and the packaging material.

Contributions of waste flows are considered in the modules where they occur.

3.3 Estimates and assumptions

The datasets for the upstream chain of the basic material production are taken from the GaBi database. Inventories of some materials are not completely available and so are partly approximated by datasets on similar chemicals or estimated by consolidation of existing datasets and literature research. The assumptions about the cleaning scenario are described in chapter 4. scenarios.

3.4 Cut-off criteria

All data from the production data acquisition, i.e. on all raw material used as per formulation, are considered. The information available for single auxiliary materials is not sufficient for generating an approximation of the supply chain. The mass proportion is about 1%; a particular risk while producing this substance is not known. This substance is neglected in the calculation.

Transport expenditures are taken into account for all essential basic materials, the dispatch of the products and the end-of-life scenario. Transport processes for packaging materials are neglected.

With the LCA calculation, the production waste resulting directly from production, the electrical and thermal energy needed, and the packaging materials, are taken into account. Machines, facilities and infrastructure used in the manufacture are ignored. Thus, even material and energy flows with a proportion of about 1% are considered. Thus, no input or output flows are neglected, which may contribute to the impact assessment significantly.

3.5 Background data

For life cycle modelling of the considered products, the GaBi 10 Software System for Life Cycle Engineering, developed by Sphera Solutions GmbH, is used. Upstream data specific information that is not available are taken from the GaBi 2021.2 database.

3.6 Data quality

Datasets were, if available, taken from the above mentioned GaBi 2021.2 database. Further datasets on the upstream chain of the basic material production are approximated with datasets on similar chemicals or are estimated by consolidation of existing datasets and literature information.

The requirements on technological, geographical and temporal representativeness are fulfilled.

3.7 Period under review

The collection of manufacturing data from 2020 serves as the data basis.

3.8 Allocation

Allocation of upstream data

For all refinery products, allocation by mass and net calorific value has been applied. The manufacturing route of every refinery product is modelled and the product-specific effort associated with their production is calculated. For other materials’ inventory used in the production process calculation the most suitable allocation rules are applied. Information on single LCIs is documented on GaBi database 2021 LCI documentation (sphera.com).

Allocation in the foreground data

The production process does not deliver any coproducts. The applied software model does not contain any allocation.

The total production of nora systems GmbH includes further products besides the declared product family. The values for thermal and electrical energy as well as for operating materials are assigned respectively while data collection on the site. Allocation keys are mass, area, pieces or retention time in the plant.

Allocation for waste materials

Production waste is fed into an energy recovery process. The energy gained is looped back in module A1-A3. The quality of the thermal energy can be considered equal to the thermal energy needed for production processes.

The calculation of emissions from the waste incineration plant follows a partial stream consideration for the combustion process, according to the specific composition of the incinerated material.

A waste incineration plant with an R1-value higher than 0.6 is assumed. The environmental burdens of the incineration process of installation off-cut and the product in the end-of-life scenario are assigned to the
Environmental Product Declaration nora Systems GmbH – norament® 928 ed

A system (A5, C3); resulting energy gain for thermal and electrical energy are declared in module D. The avoided environmental burdens are considered according to European average data for electrical and thermal energy generated from natural gas.

3.9 Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to EN 15804 and the building context, respectively the product-specific characteristics of performance, are taken into account.

The software GaBi 10 is used. As database for background data the GaBi database 2021.2 is applied.

4. LCA: Scenarios and additional technical information

Characteristic product properties
Information on biogenic Carbon
The following technical information serves as a basis for the declared modules. The values refer to the declared unit of 1 m².

Information on describing the biogenic Carbon Content at factory gate

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogenic Carbon Content in product</td>
<td>0.013</td>
<td>kg C</td>
</tr>
<tr>
<td>Biogenic Carbon Content in accompanying packaging</td>
<td>0.0027</td>
<td>kg C</td>
</tr>
</tbody>
</table>

Transport to the construction site (A4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litres of fuel (truck)</td>
<td>0.00662</td>
<td>l/100km</td>
</tr>
<tr>
<td>Transport distance (truck)</td>
<td>1000</td>
<td>km</td>
</tr>
<tr>
<td>Litres of fuel (ship)</td>
<td>0.00135</td>
<td>l/100km</td>
</tr>
<tr>
<td>Transport distance (ship)</td>
<td>500</td>
<td>km</td>
</tr>
</tbody>
</table>

Installation in the building (A5)
For the installation of 1 m² flooring, more than 1 m² flooring is necessary, dependent on the room geometry. A material loss of 5 % is assumed.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material loss</td>
<td>0.24</td>
<td>kg</td>
</tr>
</tbody>
</table>

Maintenance (B2)
Dependent on use area based on ISO 10874, dependent on the manufacturers' technical service life and the expected stress for the flooring, the service life can be determined case specifically. The effects on module B2 need to be calculated according to the actual service life, in order to achieve the total environmental impact.

Cleaning of the floor covering depends on the use of the premises. For a typical application (e.g. school building), the following manufacturer’s recommendations are considered in this declaration:

Intensive machine cleaning (single-disc machine with a suitable red pad / soft brush and an aqua-vacuum cleaner), once a year, with a suitable cleaning agent. The surface of the floor covering must be free of any dirt residues.

In order to achieve a uniform and compact protective film, the floor covering should be polished once a month with a suitable polishing pad or polishing brush.

Routine cleaning should be done manually, thrice weekly, with suitable microfibre covers and suitable wash polishes.

Further cleaning recommendations are available at www.nora.com.

Cleaning agents with a pH-value higher than 12 are not to be used.

The following values refer to a cleaning scenario of 1 year.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water consumption</td>
<td>0.016</td>
<td>m³</td>
</tr>
<tr>
<td>Auxiliary</td>
<td>0.181</td>
<td>kg</td>
</tr>
<tr>
<td>Electricity consumption</td>
<td>0.074</td>
<td>kWh</td>
</tr>
</tbody>
</table>

Reference service life

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Span according to the manufacturer</td>
<td>40</td>
<td>a</td>
</tr>
</tbody>
</table>

End of Life (C1-C4)

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy recovery</td>
<td>4.8</td>
<td>kg</td>
</tr>
</tbody>
</table>

Reuse, recovery and/or recycling potentials (D), relevant scenario information
Module D covers the energy gain of the incineration processes form A5 (off-cut of flooring installation, packaging waste) and C3 (incineration of the floor covering). A waste incineration plant with an R1-value > 0.6 is assumed.
5. LCA: Results

Note: EP-freshwater: This indicator has been calculated as kg P eq as required in the characterization model (EUTREND model, Struijs et al., 2009b, as implemented in ReCiPe; http://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml).

The values of the indicators in module B2 “Maintenance” refer to a time period of 1 year.

RESULTS OF THE LCA – ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 m² norament ed

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GWP (kg CO₂-eq)</td>
<td>2.10E+1</td>
<td>2.65E-1</td>
<td>1.40E+0</td>
<td>3.55E-1</td>
<td>4.01E-2</td>
<td>1.16E-2</td>
<td>5.62E+0</td>
<td>-2.15E+0</td>
<td></td>
</tr>
<tr>
<td>GWP (kg CO₂-eq)</td>
<td>2.06E+1</td>
<td>2.63E-1</td>
<td>1.38E+0</td>
<td>3.45E-1</td>
<td>3.98E-2</td>
<td>1.15E-2</td>
<td>5.62E+0</td>
<td>-2.13E+0</td>
<td></td>
</tr>
<tr>
<td>GWP (kg CO₂-eq)</td>
<td>9.08E-2</td>
<td>0.00E+0</td>
<td>1.94E-2</td>
<td>1.02E-2</td>
<td>3.38E-4</td>
<td>0.00E+0</td>
<td>2.38E-4</td>
<td>-1.07E-2</td>
<td></td>
</tr>
<tr>
<td>GWP (kg CO₂-eq)</td>
<td>1.03E-1</td>
<td>1.88E-3</td>
<td>5.24E-3</td>
<td>4.90E-5</td>
<td>5.63E-6</td>
<td>9.38E-6</td>
<td>6.31E-5</td>
<td>-1.48E-3</td>
<td></td>
</tr>
<tr>
<td>ODP (kg CFC11-eq)</td>
<td>1.62E-8</td>
<td>4.67E-17</td>
<td>6.13E-10</td>
<td>2.96E-11</td>
<td>9.52E-16</td>
<td>2.27E-18</td>
<td>5.74E-16</td>
<td>-2.45E-14</td>
<td></td>
</tr>
<tr>
<td>ODP (kg CFC12-eq)</td>
<td>6.01E-2</td>
<td>1.98E-3</td>
<td>3.14E-3</td>
<td>1.01E-3</td>
<td>9.27E-5</td>
<td>3.48E-5</td>
<td>5.54E-4</td>
<td>-2.80E-3</td>
<td></td>
</tr>
<tr>
<td>EP-freshwater</td>
<td>7.96E-5</td>
<td>6.90E-7</td>
<td>4.00E-6</td>
<td>1.06E-5</td>
<td>1.07E-7</td>
<td>3.41E-8</td>
<td>1.44E-7</td>
<td>-2.91E-6</td>
<td></td>
</tr>
<tr>
<td>EP-marine</td>
<td>5.52E+1</td>
<td>6.36E+4</td>
<td>8.02E+4</td>
<td>7.00E-1</td>
<td>4.85E+1</td>
<td>9.26E+1</td>
<td>3.14E+1</td>
<td>-3.90E+1</td>
<td></td>
</tr>
<tr>
<td>EP-terrestrial</td>
<td>1.76E-3</td>
<td>1.03E-3</td>
<td>9.79E-3</td>
<td>9.73E-3</td>
<td>1.93E-4</td>
<td>2.06E-4</td>
<td>1.37E-3</td>
<td>-8.50E-3</td>
<td></td>
</tr>
<tr>
<td>POC</td>
<td>5.11E-2</td>
<td>5.13E-3</td>
<td>2.86E-3</td>
<td>1.00E-3</td>
<td>5.33E-3</td>
<td>3.32E-3</td>
<td>0.00E+0</td>
<td>2.23E-3</td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>3.26E+4</td>
<td>2.13E+5</td>
<td>1.92E+5</td>
<td>6.30E+5</td>
<td>1.17E+5</td>
<td>1.08E+5</td>
<td>0.00E+0</td>
<td>-3.56E+5</td>
<td></td>
</tr>
<tr>
<td>ADPE</td>
<td>4.12E+2</td>
<td>3.45E+0</td>
<td>2.95E+1</td>
<td>8.05E+0</td>
<td>7.07E-1</td>
<td>1.53E-1</td>
<td>9.20E-1</td>
<td>-3.70E+1</td>
<td></td>
</tr>
<tr>
<td>WDP (m³ water-Eq. discharged)</td>
<td>5.22E-1</td>
<td>2.18E-3</td>
<td>5.54E-2</td>
<td>6.38E-3</td>
<td>1.07E-4</td>
<td>4.81E-1</td>
<td>-1.64E-1</td>
<td>-2.06E-1</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 m² norament ed

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERE (MJ)</td>
<td>3.10E+1</td>
<td>1.77E-1</td>
<td>1.72E-1</td>
<td>4.56E-1</td>
<td>3.26E-1</td>
<td>8.00E-3</td>
<td>9.26E-1</td>
<td>-8.42E+0</td>
<td></td>
</tr>
<tr>
<td>PERM (MJ)</td>
<td>8.43E-1</td>
<td>0.00E+0</td>
<td>-1.03E-1</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>-7.40E-1</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>PERT (MJ)</td>
<td>3.94E+1</td>
<td>1.77E-1</td>
<td>1.62E+1</td>
<td>4.56E+1</td>
<td>3.26E+1</td>
<td>8.00E+3</td>
<td>1.83E+1</td>
<td>-6.42E+0</td>
<td></td>
</tr>
<tr>
<td>PENRE (MJ)</td>
<td>3.23E+1</td>
<td>3.47E+0</td>
<td>2.13E+3</td>
<td>7.07E+3</td>
<td>1.58E+4</td>
<td>9.26E+3</td>
<td>-3.70E+1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENRM (MJ)</td>
<td>9.21E+1</td>
<td>0.00E+0</td>
<td>-2.04E-1</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>-9.19E+1</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>PENRT (MJ)</td>
<td>4.12E+2</td>
<td>3.47E+0</td>
<td>2.06E+1</td>
<td>8.05E+0</td>
<td>7.07E-1</td>
<td>1.54E-1</td>
<td>9.21E-1</td>
<td>-3.70E+1</td>
<td></td>
</tr>
<tr>
<td>SM (kg)</td>
<td>7.39E-2</td>
<td>0.00E+0</td>
<td>3.90E-3</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>RSF (MJ)</td>
<td>1.04E-1</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>NRSF (MJ)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>FW (m³)</td>
<td>7.15E-2</td>
<td>2.04E-3</td>
<td>4.28E-3</td>
<td>1.06E-3</td>
<td>3.17E-4</td>
<td>1.15E-3</td>
<td>-8.22E-3</td>
<td>-2.62E-3</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 m² norament ed

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWD (kg)</td>
<td>2.23E-4</td>
<td>1.68E-10</td>
<td>1.12E-5</td>
<td>4.14E-4</td>
<td>1.87E-10</td>
<td>8.09E-12</td>
<td>1.81E+10</td>
<td>-6.33E-9</td>
<td></td>
</tr>
<tr>
<td>NHWD (kg)</td>
<td>4.11E+0</td>
<td>5.52E-4</td>
<td>2.15E-1</td>
<td>1.80E-2</td>
<td>5.03E-4</td>
<td>2.41E-5</td>
<td>1.88E+10</td>
<td>-1.74E-2</td>
<td></td>
</tr>
<tr>
<td>CRU (kg)</td>
<td>3.59E-3</td>
<td>6.01E-6</td>
<td>1.83E-4</td>
<td>2.06E-4</td>
<td>1.05E-4</td>
<td>2.76E-7</td>
<td>4.91E-5</td>
<td>-2.71E-3</td>
<td></td>
</tr>
<tr>
<td>MFR (kg)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>MER (kg)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>EEE (kg)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
<tr>
<td>EET (kg)</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>9.48E-1</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td>1.58E+1</td>
<td>0.00E+0</td>
<td>0.00E+0</td>
<td></td>
</tr>
</tbody>
</table>

You can see the complete table with all the values in the text or download the full report for more detailed information.
RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A4</th>
<th>A5</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>[Disease Incidence]</td>
<td>6.09E-7</td>
<td>2.52E-8</td>
<td>3.21E-8</td>
<td>1.29E-8</td>
<td>6.98E-10</td>
<td>2.03E-10</td>
<td>5.22E-9</td>
<td>-2.40E-8</td>
</tr>
<tr>
<td>IRP</td>
<td>[kBq 235U / Eq.]</td>
<td>5.50E-1</td>
<td>8.78E-4</td>
<td>2.81E-2</td>
<td>1.30E-1</td>
<td>1.73E-2</td>
<td>4.07E-5</td>
<td>7.66E-3</td>
<td>-4.44E-1</td>
</tr>
<tr>
<td>ETP-fw</td>
<td>[CTUe]</td>
<td>4.38E+2</td>
<td>2.56E+0</td>
<td>2.21E+1</td>
<td>2.76E+0</td>
<td>2.97E+1</td>
<td>1.14E+1</td>
<td>4.91E-1</td>
<td>-7.79E+0</td>
</tr>
<tr>
<td>HTP-c</td>
<td>[CTUh]</td>
<td>6.11E-9</td>
<td>5.12E-11</td>
<td>3.11E-10</td>
<td>8.93E-11</td>
<td>8.42E-12</td>
<td>2.30E-12</td>
<td>3.42E-11</td>
<td>-3.53E-10</td>
</tr>
<tr>
<td>HTP-nc</td>
<td>[CTUh]</td>
<td>4.34E-7</td>
<td>2.50E-9</td>
<td>2.03E-8</td>
<td>1.88E-8</td>
<td>3.16E-10</td>
<td>1.34E-10</td>
<td>1.37E-9</td>
<td>-1.39E-8</td>
</tr>
<tr>
<td>SQP</td>
<td>[-]</td>
<td>2.12E+1</td>
<td>1.05E+0</td>
<td>1.13E+0</td>
<td>2.12E-1</td>
<td>2.23E-1</td>
<td>5.26E-2</td>
<td>2.59E-1</td>
<td>-5.76E+0</td>
</tr>
</tbody>
</table>

Caption

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to 235U; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans - not cancerogenic; SQP = Potential soil quality index

Disclaimer 1 – for the indicator “Potential Human exposure efficiency relative to U235”. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators “abiotic depletion potential for non-fossil resources”, “abiotic depletion potential for fossil resources”, “water (user) deprivation potential, deprivation-weighted water consumption”, “potential comparative toxic unit for ecosystems”, “potential comparative toxic unit for humans – cancerogenic”, “Potential comparative toxic unit for humans - not cancerogenic”, “potential soil quality index”. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

6. LCA: Interpretation

The environmental impact of the life cycle of nora floor covering is determined by the production of the product (A1- A3) and the maintenance scenario over the total assumed reference service life (B2 x RSL). The distribution of the environmental impact of the total life cycle into the life cycle stages looks very similar for all considered impact categories.

Having a closer look at module A1- A3 shows, that the supply chain, i.e. the production of the basic materials (A1) has a major contribution to nearly all impact categories to the total result for A1- A3. The production process at nora systems (A3) contributes to about 4 % of the total fossil resources (ADP fossil) and about 13 % to the global warming potential (GWP total) of the overall manufacturing (A1- A3).

With respect to the used basic materials, NBR, titanium dioxide and sodium aluminium silicate dominate the environmental impacts.

The emissions of GHGs in module C3 are significant; other impact categories are not as relevant for the incineration process.

The use stage is based on a scenario with professional cleaning equipment. The environmental impact depends on the assumptions, following the recommendations of the manufacturer. The application of machine polishing and the approximated LCI for the cleaning agents results in a GWP for the total assumed RSL of about the same value compared to the production (A1- A3) of the product.

The calculation model requires the use of estimations and approximations for some of the basic materials. Also, the use of life cycle inventories from databases leads to uncertainties of the result. Unfortunately, still rare industry data for specific supply chains are available. Being aware of uncertainties of the result values, the applied LCIs are evaluated as good for generating an EPD with applicable LCIA according to the requirements of EN 15804.

7. Requisite evidence

7.1 VOC emissions - Germany

The product has been audited for emissions at the approved test house Eurofins Product Testing A/S, Galten, Denmark (Test report no. 392-2019-00195506_B_DE) and at DIK in respect to volatile N-nitrosamines (test report no. G20N0868).

The product complies with the Basic Award Criteria for the Blauer Engel (RAL-UZ 120) for resilient floor coverings with the following requirements on emissions:

- low emissions
- low pollutant content
- no adverse impact on health in the living environment

www.blauer-engel.de/uz120
7.2 VOC emissions - Finland
norament® 928 ed floorcoverings comply also with the Finnish M1 - Emission Classification of Building Materials (tested by Työterveyslaitos, Helsinki, Finland, test report no. 2528.1).

7.3 VOC emissions - IRK
Additionally, the following relevant values are met, derived from the guideline’s values for indoor air, according to the German Indoor Air Hygiene Commission (IRK):
- styrene ≤ 30 μg/m\(^3\)
- naphthaline ≤ 2 μg/m\(^3\)

8. References

Standards

EN 1081
DIN EN 1081:2021-01, Resilient, laminate and modular multilayer floor coverings - Determination of the electrical resistance.

DIN ISO 4649
DIN ISO 4649:2021-06, Rubber, vulcanized or thermoplastic - Determination of abrasion resistance using a rotating cylindrical drum device.

ISO 9001

ISO 10140-3

ISO 10874

EN 12199
DIN EN 12199:2020-07, Resilient floor coverings - Specifications for homogeneous and heterogeneous relief rubber floor coverings

EN 13501-1
DIN EN 13501-1:2019-05, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests.

ISO 14001

ISO 14025

EN 14041
DIN EN 14041:2018-05, Resilient, textile, laminate and modular multilayer floor coverings - Essential characteristics.

ISO 15686

EN 15804
EN 15804:2019+A2 (in press), Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

DIN 18353
DIN 18353:2019-09: German construction contract procedures (VOB) - Part C: General technical specifications in construction contracts (ATV) - Laying of floor screed.

DIN 18354
DIN 18354:2019-09, German construction contract procedures (VOB) - Part C: General technical specifications in construction contracts (ATV) - Mastic asphalt works.

DIN 18365
DIN 18365:2019-09, German construction contract procedures (VOB) - Part C: General technical specifications in construction contracts (ATV) - Flooring works.

ISO 22637

ISO 23997
ISO 23997:2007-1: Resilient floor coverings - Determination of mass per unit area.

ISO 50001
ISO 50001:2018-08, Energy management systems - Requirements with guidance for use.

DIN 51130
DIN 53436-1
DIN 53436-1:2015-12, Erzeugung thermischer Zersetzungsprodukte von Werkstoffen für ihre analytisch-toxikologische Prüfung - Teil 1: Zersetzungsgerät und Bestimmung der Versuchstemperatur

DIN 53436-2

Further References

Candidate List

Copyright cover picture: © Dirk Wilhelmy

ECW code:

DE-UZ 113

DE-UZ 120
Blauer Engel Basic Award Criteria, DE-UZ 120: Elastic Floor Coverings, Version 6; February 2011.

GaBi 10

GaBi 2021.2 Database

GEV-EMICODE
EMICODE Emission Classification; www.emicode.com; GEV-EMICODE EC1 PLUS, defines the limit of what is technically feasible today.

IBU 2020
Institut Bauen und Umwelt e.V.: General Programme Instructions for the Preparation of EPDs at the Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2020. www.ibu-epd.com

M1 - Emission Classification
M1 - Emission Classification, Emission class for building materials by the Building Information Foundation RTS sr.; Helsinki, Finland (https://cer.rts.fi/en/m1-emission-class-for-building-material/m1-criteria-2/)

PCR Part A
Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report, version 1.9, IBU, 2021

PCR Part B
Part B: Requirements on the EPD for Floor coverings, version 1.2, IBU, 02-2018

TRGS 610
TRGS 610; Substitution of working methods for solvent-based primer and adhesives for floorings; January 2011.

Regulation (EU) No 305/2011